If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 7x2 + -8x + 4 = 0 Reorder the terms: 4 + -8x + 7x2 = 0 Solving 4 + -8x + 7x2 = 0 Solving for variable 'x'. Begin completing the square. Divide all terms by 7 the coefficient of the squared term: Divide each side by '7'. 0.5714285714 + -1.142857143x + x2 = 0 Move the constant term to the right: Add '-0.5714285714' to each side of the equation. 0.5714285714 + -1.142857143x + -0.5714285714 + x2 = 0 + -0.5714285714 Reorder the terms: 0.5714285714 + -0.5714285714 + -1.142857143x + x2 = 0 + -0.5714285714 Combine like terms: 0.5714285714 + -0.5714285714 = 0.0000000000 0.0000000000 + -1.142857143x + x2 = 0 + -0.5714285714 -1.142857143x + x2 = 0 + -0.5714285714 Combine like terms: 0 + -0.5714285714 = -0.5714285714 -1.142857143x + x2 = -0.5714285714 The x term is -1.142857143x. Take half its coefficient (-0.5714285715). Square it (0.3265306123) and add it to both sides. Add '0.3265306123' to each side of the equation. -1.142857143x + 0.3265306123 + x2 = -0.5714285714 + 0.3265306123 Reorder the terms: 0.3265306123 + -1.142857143x + x2 = -0.5714285714 + 0.3265306123 Combine like terms: -0.5714285714 + 0.3265306123 = -0.2448979591 0.3265306123 + -1.142857143x + x2 = -0.2448979591 Factor a perfect square on the left side: (x + -0.5714285715)(x + -0.5714285715) = -0.2448979591 Can't calculate square root of the right side. The solution to this equation could not be determined.
| 18-3v=4v+4 | | s*7-36=139 | | 2[d-(2d+19)+18]=2(d+1) | | 4(x-10)=-6(3-x)-6x | | (5x-1)+(7x+9)= | | 42x+42x= | | 8x+15y=350 | | 9(x+1)=11x-17 | | (3x-6)+(4x+9)= | | 14+x+y=29 | | 6x+5x-137=83 | | 12x-10x-14=26 | | 9s+3s-7s=5-7 | | 17x+3.3=1.4-2x | | 3x^2+33x-8.3=0 | | 17=3x^2+2x | | log(9)(x)+log(9)(x+24)=2 | | 7+h=48 | | 2(2k+3)-10k+5+2= | | 7b-h=48 | | 5(2x)(3x)=(10x)(15x) | | .1x=1.2-.3x | | 7-h=37 | | (5m+5)+(3y+2)= | | (4x+5x+6x)/3= | | .9x=.4-.3x | | (k+2)x^2+4x+k=-5 | | y-2(-9)=7 | | 11x-7x-26=34 | | x(8-x^3)=0 | | -15=2x-2 | | 8t+3=75 |